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Abstract 

The classical and M-estimator-based robust Wald tests are introduced to simultaneously test an arbitrary 

subset of coefficients of a multiple regression model when the remaining coefficients are either (i) 
unspecified, (ii) specified with certainty or (iii) suspected with uncertainty. Under the three scenarios the 

classical and robust Wald test statistics for (i) unrestricted (UT), (ii) restricted (RT) and (iii) pre-test (PTT) 

tests are defined.  The aims of  the paper are to (i) define the classical and robust Wald UT,  RT and PTT 
statistics, (ii) find the asymptotic distribution of the test statistics (iii) determine the power function of the 

tests and (iv) compare the performance of the robust Wald UT, RT and PTT to their classical counterparts 

for large data. A Monte Carlo simulation study is conducted to obtainand compare the empirical power of 
the tests. The simulation study shows a domination of the PTT over the UT and RT when the suspected 

values are close to the true values and the robust Wald test is better than the its classical counterpart in terms 

of size and power under a slight departure from normality assumption. An example with Olympic athlete 
data is provided for illustration of the proposed method. 
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1. Introduction 

 
In many disciplines, results from previous studies or knowledge of experts in the field may pro-vide 

valuable prior information on the value of the underlying parameters of a multiple linear regression 

model. In general, inclusion of any trustworthy prior information in the estimation of parameter and test 

of hypotheses may improve the quality of statistical inference. Although the prior information usually 

comes from trusted sources, there is always an element of uncer-tainty in such information. The idea of 

the removal of the uncertainty in the non-sample prior information (NSPI) through a preliminary testing 

(pre-test) has drawn an increasing attention in the statistics literature since Bancroft (1944). However, 

almost all the initial studies in this area were focusing on improving estimation of parameters rather than 

hypothesis test. Ahmed and Saleh (1989), Akritas et al. (1984), Khan and Saleh (2001), Khan (2000, 
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2003, 2005), and Saleh (2006), to name a few, are among contributors to the study on developing 

and improving estimators of various kind of statistical models through preliminary testing. Despite 

the plethora of studies into the effects of pre-test on estimation, there are only few studies that have 

involved the 

 

In statistics, it is a general interest to increase the power of any test, and it is more so for the testing 

after pre-test problem. Statistician shave studied the effect of pre-testing on the final test for several 

models including the analysis of variance (Paull 1950, Bechhofer 1951, Bozivich et al.1956, Mead 

et al.1975, among others), one sample and two sample problems (Tamura 1965), simple regression, 

multiple regression, multivariate regression and parallelism models (Saleh and Sen 1982,1983, 

Lambert et al. 1985, Yunus and Khan 2010, 2011a, b). In the literature, the statistical tests that were 

used in these models are based on the rank tests (Tamura 1965, Saleh and Sen 1982, 1983) and the 

robust score tests (Yunus and Khan 2010, 2011 a, b) for large sample size and the t-test (Khan and 

Pratikno 2013) for small sample size. The feature that distinguishes this paper from the previous 

works in the context of multiple regression model is the introduction of classical and robust Wald 

test in the preliminary testing frame work. Furthermore, it defines and investigates the size and 

power of classical and robust Wald tests in the context of testing an arbitrary subset of regression 

parameters where prior information on the other subset is available. It also provides an illustrative 

example of the proposed test using Olympic athlete data. 

Consider the following multiple regression model 

 

Yn=  Xn β+en, (1.1) 

 

where
n 1 2 n

Y = (Y ,Y ,...,Y )   is a vector of n realizations of an observable response variable, Xn is a 

known design matrix of order 
1 2 p

, = ( , ,..., )  n p     
 
is a p-dimensional row vector of 

unknown regression parameters, and en = (e1, e2, . . . , en)' is a vector of n independent and 

identically distributed errors with a distribution function F. 

 

To formulate the testing of an arbitrary subset of the regression parameter vector, let’s partition the 

p-dimensional parameter vector   as  1 2
,      with  1 1

,...,
r

    and  2 1
,...,

r p
  


   two 

r and t dimensional row vectors such that r + t = p. Then, partition n
X   as  1 2

,
n n

X X  , where Xn1 

is a known design matrix of order n × r and Xn2 is another known design matrix of order n×t. 

 

Consider testing the parameters vector β1 specified at β01 when there is uncertain NSPI on β2, 

namely values (i) unspecified (ii) specified and (iii) suspected but not sure. For case (i), we want to 

test *

0 1 01
:H   against *

1 01
:

A
H   with β2 is treated as a nuisance parameter. 
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This test is called the unrestricted test (UT). For case (ii), the test for testing *

1 01
:

A
H    against 

*

1 01
:

A
H    when 

2 02
  , is called the restricted text (RT). For case (iii), testing 

 1

0 2 02
:H   , is 

recommended to remove the uncertainty of the suspicious values of 2 02
  before testing on 1

 . The 

test on 
 1

0 2 02
:H    against 

 1

2 02
:

A
H   is known as a pre-test (PT). If the null hypothesis is this 

pre-test rejected, the UT is appropriate to test *

0
H , otherwise the RT is used to test *

0
H . The final test for 

testing for testing *

0
H , following a pre-test on 

 1

0
H , is termed as the pre-test test (PTT). The objective 

of this study is to determine which of the classical and robust Wald UT, RT and PTT is better 

in terms of the test power criterion.  

 

The next section briefly reviews the classical and robust Wald tests. Section 3 derives the 

asymptotic distribution of robust M-estimator sunder the null hypothesis. The robust Wald test 

statistic for the PT to test 
 1

0
H , and the UT, RT and PTT to finally test *

0
H  are introduced in Section 4. 

In the same section, we also provide the classical counterpart for robust Wald test. In Section 5, the 

Monte Carlo simulation for the comparison of the power of the tests are performed and the results 

are presented graphically. An illustrative example on the application of the method is provided in 

Section 6 with Olympic athlete data. Some concluding remarks are included in Section 7. Interested 

readers may refer to Appendix B and C for the asymptotic distribution under a sequence of local 

alternatives required for the derivation of the asymptotic power functions of the proposed robust 

Wald UT, RT and PTT. R-codes for the simulation study is available upon request. 

 

2. Classical and Robust Wald Tests 

 
Wald test is one of the classical tests that is widely used in statistics and econometrics. Originally 

proposed by Wald (1943), the test has been used to test parameters of linear models by many 

authors including Engle (1984). When F represents a multivariate normal distribution with mean 

vector 0 and covariance matrix σ0
2 

In, σ0
2
>0, the test statistic for the classical Wald test for testing 

the simple null hypothesis 
0 0

H     against 0
:

A
H    is defined as  

 

   
1

0 0
,

n

n

CW    



    (2.2) 

where  
1

n n n n
X X X Y


   is the maximum likelihood estimator of  , and  

12

0
ˆ

n n

n

t
X X

n





   where 

 
2

2

0
ˆ n

i i
Y X   , in which i

Y  is the response variable ion individual i and vector i
X  is the ith row 

of the design matrix n
X , for i = 1, 2, ...,n. 
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The reason for preferring the Wald test over other alternative tests is its simple formulation. The 

Wald test is defined using the estimated coefficient and the variance of the estimator. The Wald test 

is easier to implement than its competitors such as the score test (Rao 1948), as it does not require 

the computation of the score function and the inversion of the information matrix (Carolan and 

Rayner 2000). The Wald and score tests for simple null hypothesis are asymptotically equivalent 

for large sample size (cf. Atkinson and Lawrance 1989, Rayner and Best1989, p.42). The 

performance of the tests can vary significantly for small samples. Un-like the likelihood ratio test 

(Neyman and Pearson 1928), the Wald test does not require the computation of the maximum 

likelihood function of the parameters both under the null and alternative hypotheses (Sen et al.  

2010, pp.77).  The likelihood ratio test has widely been used to test for the significance of a subset 

of parameters of a multiple regression model. According to Engle (1984, pp.792), the Wald 

(specifically the Wald UT) and likelihood ratio tests are asymptotically equivalent but the Wald test 

is computationally easier. 

 

Most real-world data sets contain outliers, and thus do not follow the commonly assumed normal 

distribution. The classical Wald test defined in equation (2.2), however, is highly sen-sitive to 

model mis-specification and presence of outlying observations. Several versions of robust Wald test 

for linear model appear in Carroll and Ruppert (1988, pp. 214), Heritier and Ronchetti (1994), 

Jurečkováand Sen (1996,pp.419) and Silvapulle (1992). Recently, Basuet al. (2018) used minimum 

density power divergence estimator to define Wald test for multiple linear regression model. Using 

the same estimator Basuetal. (2017) defined Wald type test for the logistic regression model. 

 

In this paper, we use M-estimator to define robust Wald test. This method is used to define 

alternative Wald tests, namely the UT, RT and PTT when uncertain non-sample prior 

information is available, and compared with their classical counterparts. A robust version of Wald 

test that is given in Jurečková and Sen (1996, pp.419) is defined below     

     
2

0 02
,

n n n
RW X X


   




    (2.3) 

 

where  
1 i i

n n

n

Y X
S

S

 


  
  

 
  and 

22 1 i i

n

Y X
n

S


 

 
  

 
  are respectively estimates of 

   
1

u s dF u
s

 





   and    2 2
u s dF u 





   . Note here   is a robust M-estimator of  , 

studentized by n
S , (cf. Jurečková and Sen,1996, pp. 216), and is the solution to 
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  0i i

n i

n

Y X
M X

S


 

 
  
 

 , where i
Y  is the responses variable on individual i, vector i

X  is the 

ith row of the designed matrix n
X , the function   is a nondecreasing and skew symmetric score 

function, in the sense of Huber (1981). Here n
S  is a scale statistic for estimating s = s(F), the scale 

parameter of distribution F. n
S  is the scaled median absolute deviation (MAD) of  i i

Y X  . The 

classical Wald test is a special case of the robust Wald test. In this case 2

0
s   and taking  u s u s 

, where u Y X   , gives 1   and 2 2

0
  . 

 

3. Asymptotic Distribution of Robust M-estimator 

 

To find the power function of the tests defined in Section 4, the following asymptotic distributions 

of the robust M-estimators are required. According to Jurečková and Sen (1996, pp.216), if 

   2 2
u s dF u 





   ,    
1

u s dF u
s

 





   then 

 

 
2

1

2
0, ,n N Q


 


 
   

 
 (3.4) 

where 
1

lim n

n

Q Q
n

  with n n n
Q X X . 

 

To facilitate the derivation of the joint distribution, consider the following matrix partitioning:   

 

11 1211 12

21 2221 22

1 1
,lim lim

n n

n

n n n n

Q QQ Q
Q Q

Q QQ Q n n 

  
     
   

 (3.5) 

 

where 
njk nj nk

Q X X  for j, k = 1, 2. The following theorem provides the asymptotic joint distributions of 

the robust M-estimators under the null hypothesis 

 

Theorem 3.1 Under 0 1 01 2 02
: ,H      , asymptotically,  

 

(i)  
* 1 *2

1 121 01

2 * * 1

21 22 02

0
, ,

0

d

p

Q Q
n N

Q Q

  

 





      
      

        

 (3.6) 

(ii) 

* 12

111 01

2 * 1

22 02

0 0
, ,

0 0

d

p

Q
n N

Q

  

 





      
      

        

 (3.7) 
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where 
1
  is the first r rows of 

1
  

2
  is the last t rows of   and 

1
  is the restricted robust M-estimator 

of 1
 , the solution of  1 1 02

, 0
n

M    , where 

 

  1 2

1

,
n

i i i

nj ji

i n

Y X a X b
M a b X

S




   
  

 
  (3.8) 

 

for j = 1, 2 with Sn is a scale statistic of ,
r

s a  and t
b , Note here 

* 1 * 1 * 1 1 * 1 * 1

12 11 12 2 21 22 21 1 1 11 12 22
, ,Q Q Q Q Q Q Q Q Q Q Q Q

     
       and * 1

2 22 21 11 12
Q Q Q Q Q


  .  

 

The proof of Theorem 3.1 is given in appendix A. The asymptotic distributions of the robust M-

estimators given in this section are used to obtain the power functions of robust Wald UT RT, PT and 

PTT defined in the next section.  

   

4. The Classical and Robust Wald UT, RT, PT and PTT 

 
In this section, the test statistics of the classical and robust Wald UT, RT, PT and PTT are 

defined. 

 
4.1 The Classical and Robust Wald UT 

 
In this section, the test statistics of the classical and robust Wald UT are defined.  

 

(i) The Robust Wald UT (RWUT)  

 

If 2
  is unspecified, the proposed test statistic for testing *

0 1 01
:H    against *

1 01
:

A
H    is 

   2 * 2

1 01 1 1 01
/ ,

UT

n n
RW Q     


    (4.1) 

 

where * 1

1 11 12 22 21n n n n n
Q Q Q Q Q


  , in which 

njk nj nk
Q X X  for j, k = 1, 2. It follows from equation 

(3.6) that UT

n
RW follows a 2

r
 (chi-squared distribution with r degrees of freedom) under 

*

0
H as n   . 

 

(ii) The Classical Wald UT (CWUT) 

The classical Wald UT is the nonrobust counterpart of the robust Wald UT and it is given as 

follows:         

 

   * 2

1 01 1 1 01 0
ˆ/

UT

n n
CW Q    


    (4.2) 

with 
1
  is the first r rows of  . Note also that UT

n
CW  follows as 2

r
  under *

0
H as n   . 
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4.2 The Classical and Robust Wald RT 

 
In this section, the test statistics of the classical and robust Wald RT are defined. 

 

(i) The robust Wald RT (RWRT) 

 

If 2 02
   (specified), we find 1 1 2 02n n n n

Y X X e    , and the proposed test statistics for 

testing *

0 1 01
:H    against *

1 01
:

A
H    is 

 

   2 2

1 01 11 1 01 2
ˆ ˆˆ / ,

RT

n n
RW Q     


    (4.3) 

 

where 
 

2 1 2 1 1 2 02

2 2

ˆ
i i

n

Y X X
n

S

 
 


   

   
 
 

  with 
 2

n
S  is the scaled MAD of 

 1 1 2 02
ˆ

i i i
Y X X     and 

 

1 1 2 02

2 2

ˆ1
ˆ i i i

n n n

Y X X

S S

 
 

   
   
 
 

 . It follows from equation (3.7) 

that 2RT d

n r
RW   under *

0 1 01
:H    when 2 01

   for large n. 

 

(ii) The Classical Wald RT (CWRT) 

The classical Wald RT is the nonrobust counterpart of the robust Wald RT and it is given as 

follows:  

 

   † † 2

1 01 11 1 01 2
ˆ/

RT

n n
CW Q    


    (4.4) 

 

with  
1† **

1 1 1 1
,

n n n n
X X X Y


   where **

2 02n n n
Y Y X    and  

2
2 †

2 1 1 2 02
ˆ /

i i i
Y X X n      . 

The RT

n
CW  follows a 2

r
  under *

0
H  as .n   

 
4.3 The Classical and Robust Wald PT 

 
The test statistics of the classical and robust Wald PT are defined below. 

 

(i) The robust Wald PT (RWPT) 

For the preliminary test on the 2
 , the proposed test statistic for testing 

 1

0 2 02
:H    against 

 1

2 02
:

A
H    is given by  

   2 * 2

2 02 2 2 02
/

PT

n n
RW Q     


    (4.5) 

where * 1

2 22 21 11 12n n n n n
Q Q Q Q Q


  . It follows from equation (3.7) that 2PT d

n t
RW   under 

 1

0
H . 

 

(ii) The Classical Wald PT (CWPT) 
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The classical Wald PT is the nonrobust counterpart of the robust Wald PT and it is given 

follow:  

   * 2

2 02 2 2 02 0
ˆ/ ,

UT

n n
CW Q    


    (4.6) 

with 
2

  is the last t rows of  . Then, 2PT d

n t
CW   under  1

0
H . 

 
4.4 The Classical and Robust Wald PTT 

 
If the null hypothesis of this pre-test is rejected, the UT is appropriate to test *

0
H , otherwise the 

RT is used to test *

0
H . The final test for testing (1)

0
H , following a pre-test on H

(1)
, is termed as 

the pre-test test (PTT). The test statistic for testing *

0
H  following a pre-test on β2 is a choice 

between RT and UT. The UT is used if 
 1

0 0
:H   is rejected and the RT is used if H

(1) 
is 

accepted.  

 

The asymptotic power functions of the classical and robust Wald UT, RT and PT are based on 

the univariate χ
2
 probability distribution, but the asymptotic power function for the final PTT 

involves two bivariate χ
2
 distributions (see Appendix B and C for details). Here the PT and RT 

are independent and PT and UT are correlated. So, the correlated bivariate non central χ
2
 

distribution is used to find the asymptotic power function of the PTT. Thus, the computation of the 

power of the PTT using the asymptotic power function involves the bivariate noncentral  χ
2
 

probability integral. Instead of using directly the asymptotic power function formula to 

compute the power of the PTT, a Monte Carlosimulation method was used in this study. 

 
5. Power Comparison using a Monte Carlo Simulation 

 
To compare the performance of the tests, the analytical comparison is unrealistic. Instead a Monte 

Carlo simulation method is used to compare the power of the tests. In this section, the power of 

the classical and robust Wald UT, RT and PTT are obtained using a computer generated 

Monte Carlo experiment. The objectives of this section are to determine which of the UT, RT 

and PTT is better, and to compare the proposed robust Wald UT, RT and PTT to the classical 

Wald UT, RT and PTT, each under normality and a slight change to normality. A multiple 

liner regression model with three parameter 1 2 1 2i i i i
y x x        for i = 1, 2, ...,n was considered 

in the simulation. Here, take n = 100. The error terms i
 , i = 1, 2, ...,n are generated randomly from (i) 

normal with mean 0 and variance 1, N (0, 1) (ii) 10% wild: First i
  is generated from normal distribution 

with mean 0 and variance 1, then choose randomly 5% of the generated i
  and multiply them by a scalar 

10, and another 5% choose randomly 5% is multiply by a scalar -10. The observed values of the 
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regression 1i
x  where generated randomly from a uniform distribution with minimum and maximum 

values of 0 and 1, and those of 2i
x were from normal distribution with mean 1 and variance 1. We let 

1 1

2 2
1 10 1 2 20 1

, ;n n     
 

     
1

2
0 2

,n  


   1 2 10 20
, 0, ,with      and then generate a 

random sample for selected values of 1 2
, and   . 

 

For selected values of δ1 and δ2, 5000 simulations were run in which a sample was drawn from 

normal or 10% wild distributions. Each of the tests was run with in each simulation and *

0
H :θ1=θ10, 

θ2=θ20 was either rejected or not rejected at the 5% significance level. Size of the UT, RT and PTT is 

the probability of rejecting the null hypothesis *

0
H :θ1= θ10, θ2= θ20 when it is true. First, we 

generate data set for δ1=0. Then, each test statistic was computed for the dataset. We then find the 

proportion of tests rejecting the null hypothesis from 5000 simulated data sets, and then use it to 

estimate the size of the test for the UT and the RT. On the other hand, the power of the test is the 

probability of rejecting false *

0
H . We generate a different data set for an arbitrary positive value of 

δ1 (eg.2, 4). As δ1 moves away from 0, it is suspected that the power of test increases. To estimate 

the probability of rejecting the null hypothesis *

0
H , we find the proportion of rejecting the null 

hypothesis from 5000 simulated data sets when the true values of θ1 and θ2 are not respectively θ10 

and θ20, that is, when δ1>0.  

 

For the PTT, the UT is used if
 1

0
H :β=β0 is rejected and the RT is used if 

 1

0
H is accepted. So, 

the PTT is either the UT or RT depending on the outcome of the PT. The proportion of 

rejecting *

0
H from the UT or the RT following the result from the PT among 5000 generated 

data sets is taken as the probability of rejecting *

0
H for the PTT. 

 

Since the classical and robust Wald UT, RT and PTT are defined based on the knowledge of β, it 

is of interest to compare the size and power of the tests by plotting them against δ2, where 

 2 0
n    . Figure1 (in Appendix D) shows the size and power of the classical and robust 

Wald UT, RT and PTT, when the distribution of the error term in the multiple linear regression 

model is N(0,1) and 10% wild, and sample size is n =100 for selected values of δ1. Our first aim is to 

determine which of the UT, RT and PTT is better, both in the size and power of the test. 

Although the classical and robust Wald RT have the largest power in comparison to those of the 

UT and PTT, it also has the largest size as δ2 grows larger. The RT is defined when β=β0, and it 

is as expected that the size of RT increases as  2 0
n    increases. On the other hand, the 

size and power of the UT are constant regardless the value of δ2. This is because UT treats β as a 
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nuisance parameter. In comparison to RT, the UT has the smallest size, but also the smallest 

power for small δ2 because β is not specified at the nullhypothesis in the specification of the UT. 

The PTT is either the UT or RT depending on the PT. Thus it is a compromise between the 

two tests. The PTT behaves similar to the RT for small δ2, that is, when PT accepts (1)

0
H . On 

the other hand, it behaves similar to the UT when (1)

0
H is rejected using the PT. Thus, for a 

larger value of δ2, it behaves similar to the UT. The PTT is better than the RT in terms of size 

and it is better than the UT in terms of power when δ2 is small. Although the prior information 

on the β vector is uncertain, there is a high possibility that its true value is quite close to the 

suspected value. Therefore, the study on the behaviour of the three tests when δ2 is small is more 

realistic. 

 

It is of interest to see the effect of wild observations in the data on the classical and robust Wald 

tests performance. Figure1(in Appendix D) depicts that the power of classical Wald UT, RT and 

PTT are about the same as those of the robust Wald UT, RT and  PTT when the distribution of the 

error term is normal (see Figures 1(a), (c) and (e)). However, under a slight change to normality, the 

classical test lost its power and the robust Wald PTT has shown a remarkable performance in terms 

size and power compared to the classical Wald tests when the error term is 10% wild (see Figures 

1(b), (d) and (f)). The robust Wald PTT has shown some robustness property under a slight change 

to normality assumption through this simulation example. 

 

The performance of a test depends on the sample size. Figure 2 (in Appendix D) shows the power 

of the classical and robust Wald UT, RT and PTT for data generated from normal or 

10% wild distributions when δ1= 2 and for some selected sample sizes n = 40, 60 and 120. The 

proportion of rejecting *

0
H  is plotted against ∆β, where ∆β = β−β0 = δ2/ n . As n grows larger, the 

performance of the tests differ. When the distribution of the error term is normal, the power of both 

classical and robust Wald UTs are same and constant but increase as n grows larger. The power of 

the classical and robust Wald RT increase as ∆β increases and are larger for data with a larger 

sample size than that with a smaller sample size. The power of the PTT is better than that of the 

UT and is larger for data with a larger sample size when ∆β is small, i.e. when the suspected value 

is close to the true β. When the distribution of the error term is10% wild, the classical and robust 

Wald tests performance differ more as n gets smaller. Again, the powers of the tests are larger for 

data with larger sample sizes. The power of all the classical UT, RT and PTT tests are smaller than 

those of the robust Wald tests for smaller ∆β, i.e. when the suspected value is close to the true β. 

Even for a larger value of ∆β, i.e. in case when the suspected value is quite far away from the true β, 

the robust Wald tests have more power than the classical tests for data with a smaller n that those 

with a larger sample size. As sample size grows larger, the robust Wald tests are more insensitive to 
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wild observations (outliers) and have closer power performance to those tests in the normal case. 

The classical Wald tests fail to maintain similar power as they have in the normal case when the 

sample size is small and in the presence of wild observations. 

 

In the next section, the test statistics of the UT, RT and PTT are computed for the Olympic athletes 

data set. 

 

6. Application on Data 

 
In this section, the proposed robust Wald UT, RT and PT were used on a set of real life data to 

view the effect of pre-testing (PT) on the final test (PTT) and the effectiveness of the robust 

Wald test compared to its classical counterpart. For this illustration, we used 2012 Olympic 

athletes data which can be accessed from the Guardian website, 

http://www.theguardian.com/sport/datablog/2012/aug/07/olympic-2012-athletes-age-weight-height. 

 

The data set contains several variables related to the athletes from 205 countries, including place of 

birth, height, weight, age, type of sport, etc. However, we use the data set on Australia athletes and 

focus on three variables weight, height and age. The height (in cm) and age (in year) are the 

independent variables and weight (in kilogram) is the response variable. The regression model is as 

follows: 

 

weighti = β0+β1 heighti +β2 agei +ei. (6.7) 

 

The quantile-quantile normal plot and scatter plot of the standardized residuals (see Figure 3, as in 

Appendix D) from the least-squares fitted model revealed several outliers in the data. The least 

squares estimates of β0, β1 and β2 are 138.8, 0.587, and -0.1178, respectively. Table 1 gives the 

test results for two hypothesis: (i) *

0 0 1
: 140; 0.6H     (using RT and UT), and (ii) (1)

0 2
: 0H  

(using PT). 

 

In the case of the robust Wald test, the age is not significant at the 5 % level for the PT 

(P=0.052). Thus, PTT becomes the RT, and we then reject at the 5% level (P<0.001). On 

the contrary, age becomes significantly important in the case of the classical Wald test at the 

5% significance level (P = 0.044), so we use the UT as the final test, and we cannot reject *

0
H  

(P=0.323). 

 

So the classical Wald PTT cannot reject *

0
H  using the classical Wald UT. But under the robust 

Wald test, the PTT becomes the RT leadings to the rejection of *

0
H . Since the robust Wald PTT 

has more power than the classical Wald PTT under a slight departure from normality assumption, 

we decide to reject *

0
H  at the 5% significance level. 



JUJSS Khan and Yunus 

12 

7. Concluding remarks 

 
In this paper, we have introduced robust Wald UT, RT and PT in the context of multiple 

regression model in the preliminary testing framework. Theorem 3.1 shows it is clear that there is a 

correlation between the two components of the test statistics, namely the robust Wald UT and PT, 

but no correlation between that of the robust Wald RT and PT from the structure of the 

covariance matrix in equations (3.6) and (3.7). Since robust Wald PTT is either UT or RT 

depending on the outcome of the PT, its asymptotic distribution is determined from the 

distribution of the test statistics for the UT, RT and PT. It is found that, the asymptotic 

distribution of the robust Wald PTT is a bivariate noncentral chi-squared distribution with the 

noncentrality parameters of the robust Wald UT, RT and PT. The asymptotic joint distribution of 

the test statistics under the alternative hypothesis is used to obtain the asymptotic power function 

(See Appendix B and C for details). 

 

For the purpose of comparing the power of the competing tests, the Monte Carlo experiment is 

used. The asymptotic power of the PTT is obtained as the proportion of the rejection of the UT or 

the RT in N replicated samples, following the result from the PT. From the simulation, both the 

classical and robust Wald tests are preferred when normality assumption is satisfied, as both tests 

have similar performance in terms of size and power of the test. However, in the presence of 

contamination or wild observations in the data, the classical Wald test lose its power. On the other 

hand, the power of the robust Wald test is not affected by the wild observations in the data. Thus, 

the robust Wald test has shown a remarkable robustness property under a slight departure from 

normality assumption. 

 

The robust Wald RT has the highest power compared to those of the UT and PTT, but it also 

has the largest size. On the contrary, the robust Wald UT’s size is the smallest, but its power is 

also the smaller expect when  
1

2
1 1 01

n     or  
1

2
2 1 02

n     is large. So, both robust Wald 

UT and RT fail to attain the lowest size and the highest power criteria. The robust Wald PTT’s 

size is smaller than that of the robust Wald RT. Its power is also higher than the robust Wald 

UT, with the exception of very large values of λ1 or λ2. Consequently, if the prior information 

on the value of β2 is not far from its true value, that is, λ2 is near 0 (small or moderate) 

difference the robust Wald PTT’s size is smaller than that of the RT, and its power is higher 

than that of the UT. Thus, the robust Wald PTT is a better choice among the three tests 

regardless the normality assumption is violated or not. Since the prior information is given by 

experienced experts in the field or from previous studies, the value of λ2 should not be far from 0, 

even though it may not be 0, and therefore the robust Wald PTT is preferable over those of the 

UT and RT. 
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