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Abstract 

 

The star puzzle is a variant of the Tower of Hanoi problem, where, in addition to the usual three 

pegs, S, P and D, there is a fourth one such that all disc movements are either to or from the fourth 

peg. Letting MS(n) be the minimum number of moves required to solve the star puzzle, MS(n) 

satisfies the recurrence relation below 
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This paper studies the computational aspect of the star puzzle. 
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1.  Introduction 

 

The star puzzle, posed and solved by Stockmeyer [1], is as follows : There are three pegs, 

S, P and D, arranged in an equilateral triangle, and there is the fourth peg at the center 0. 

Each disc movement must be either to or from 0, that is, direct moves of discs between any 

two of the pegs S, P and D are not allowed. Initially, the n discs of different sizes, 

designated as D1, D2, …, Dn, are placed on the source peg, S, in a tower (in small-on-large 

ordering, with the largest disc, Dn, at the bottom, the second largest disc, Dn – 1, above it, 

and so on, with the smallest disc, D1, at the top). The problem is to shift this tower of n 

discs from the peg S to the destination peg, D, in minimum number of moves, using the 

auxiliary peg P, under the condition that each move can transfer only the topmost disc from 

one peg to another such that no disc is ever placed on top of a smaller one. The situation is 

depicted below. 
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Let MS(n) denote the minimum number of moves required to solve the above problem. 

Then, MS(n) satisfies the following recurrence equation, due to Stockmeyer [1]. 
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with 

MS(0) = 0, MS(1)  =  2.       (1.2) 

 

Recall that, to find (1.1), the scheme below is followed : 

 

Step 1: Move the tower of the topmost n – k discs from the peg S to the peg P, using all the 

four pegs available, in (minimum) MS(n – k) number of moves. 

 

Step 2: Transfer the remaining k discs from the peg S to the peg D, using the three pegs 

available. This corresponds to the three-in-a-row puzzle, due to Scorer, Grundy and Smith 

[2], and the (minimum) number of moves required is 3
k
 – 1. 

 

Step 3 : Finally, move the tower from the peg P on top of the discs on the peg D, again in 

(minimum) MS(n – k) number of moves. 

 

The total number of moves required is 

 

FS(n, k)  2MS(n – k) +3
k
 – 1,                                          (1.3) 

 

where k (1 ≤ k ≤ n – 1) is to be determined so as to minimize FS(n, k). 

 

Note that, with only one disc, the transfer is made first from the peg S to the auxiliary peg 

P, next the disc is moved from the peg P to the destination peg D. The number of moves 

involved is thus 2. 
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Figure 1.1 : The Star Puzzle 
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The following results have been established by Majumdar [3]. 

 

Lemma 1.1 : MS(n) is an even (positive) integer for any integer n ≥ 1. 

 

Lemma 1.2 : For n ≥ 4, MS(n) is not attained at k = n – 1. 

 

Lemma 1.3 : MS(n +1) > MS(n), n ≥ 1. 

 

Lemma 1.4 : For any n ≥ 1, MS(n + 2) – MS(n + 1) ≤ 2{MS(n + 1) – MS(n)}. 

 

The problem was later taken up by Majumdar [4], who derived some local-value 

relationships satisfied by the optimal value function MS(n). Stockmeyer [1] gave a sketch 

of the proof that MS(n) is attained at the unique point 1,k
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where  1nnb  is the sequence of numbers, arranged in (strictly increasing order), defined 

as follows : 

 

bn =
 
2

i 
3

m
; i

 


 
0, m

 


 
0. 

 

However, the argument given by Stockmeyer [1] to derive (1.1) is rather heuristic in nature, 

and is not supported by any theoretical development. Moreover, to find MS(n), we have to 

keep track of the sequence of numbers  1nnb  about which much is not known. In this 

paper, we give an algorithm which calculates MS(n) recursively in n. The proposed 

algorithm also finds the point k at which MS(n) is attained. This is given in Section 3. In 

the next Section 2, we give some preliminary results. 

 
2.  Some  Preliminary  Results 

 

The following results have been derived by Majumdar [4]. 

 

Lemma 2.1 : For any integer n ≥ 1,  

 

(a) MS(n + 2) – MS(n + 1)
 
>

 
MS(n + 1) – MS(n), 

 

(b) MS(n) is attained at a unique value of k. 

 

Corollary 2.1 : If, for some integer n ≥ 1, MS(n) is attained at the point k = k1 and MS(n + 1) 

is attained at k
 
=

 
k2, then k1 ≤ k2 ≤

 
k1 +

 
1. 
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Corollary 2.2 : If, for some integer n ≥ 1, MS(n) is attained at the point k = K and MS(n + 1) 

is attained at k
 
=

 
K

 
+

 
1, then MS(n + 2) must be attained at k = K + 1. 

 

Lemma 2.2 : Let, for some integer n
 


 
2, 

 

MS(n) – MS(n
 
–

 
1) = 2

s
 for some integer s ≥ 1.            (2.1) 

 

Then, MS(n – 1) and MS(n) both are attained at the same value of k. 

 

Lemma 2.3 : Let, for some integer n
 


 
1, 

 

MS(n) – MS(n – 1) = 2.3
ℓ
 for some integer ℓ ≥ 0.               (2.2) 

 

Let MS(n) be attained at k = K. Then, MS(n – 1) is attained at k = K – 1, and MS(n + 1) is 

attained at k
 
=

 
K. Moreover, MS(n – 1) and MS(n) satisfy the relationship (2.2) (for some 

integer n ≥ 1) if and only if MS(n – 1) and MS(n) are attained at different (consecutive) 

values of k. 

 

Lemma 2.4 : Let N ≥ 1 be such that MS(N – 1) is attained at k
 
=

 
K

 
–

 
1 and MS(N) is attained 

at   k = K, so that 

 

MS(N) – MS(N
 
–

 
1)

 
=

 
2.3

K – 1
.                                        (2.4) 

 

Then, there is an integer M
 
≥

 
1 such that  

 

MS(N
 
+

 
M

 
+

 
1) – MS(N + M) = 2.3

K
.                                (2.5) 

 

We now prove the following result. 

 

Lemma 2.5 : Given any integer K
 


 
1, there is an integer N

 


 
1 such that MS(N) is attained 

at the point k
 
=

 
K

 


 
1. 

 

Proof. The proof is by induction on K. The result is true for K
 
=

 
1 with N

 
=

 
1. So, we 

assume that the result is true for some integer K
 


 
1, that is, we assume that, for K (

 


 
1), 

there is an integer N such that MS(N) is attained at k
 
=

 
K, so that 

 

MS(N) = 2MS(N – K)
 
+3

K
 – 1. 

 

Now, by Corollary 2.1, MS(N
 
+

 
1) is attained either at k

 
=

 
K, or else, at k

 
=

 
K

 
+

 
1. In the 

latter case, the proof by induction is complete. Otherwise, MS(N
 
+

 
1) is attained at k

 
=

 
K, so 

that 

MS(N + 1) = 2MS(N – K + 1) +
 
3

K
 – 1< 2MS(N – K)

 
+

 
3

K+1
 – 1, 

 

and hence 

       MS(N
 
+

 
1) – MS(N)

 
<

 
3

K
. 
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Now, if MS(N
 
+

 
2) is attained at k

 
=

 
K

 
+

 
1, the proof is complete; otherwise 

 

      MS(N + 2) = 2MS(N – K + 2)
 
+

 
3

K
 – 1

 
< 2MS(N – K + 1)

 
+

 
3

K+1
 – 1, 

giving 

MS(N
 
+

 
2) – MS(N

 
+

 
1)

 
<

 
3

K
. 

 

Continuing in this way, in the worst case, we get the sequence of functions (for some 

integer m), MS(N
 
+

 
1), MS(N

 
+

 
2), …, MS(N

 
+

 
m), …, each of which is attained at the point 

k
 
=

 
K, with 

 

MS(N + i) – MS(N + i – 1) < 3
k
, i = 1, 2, … . 

 

But, by part (a) of Lemma 2.1, the sequence   1i )1iN(MS)iN(MS  is strictly 

increasing in i (
 


 
1), and hence, there is an integer m (

 


 
1) such that 

 

MS(N
 
+

 
m) – MS(N

 
+

 
m

 
–

 
1)

 


 
3

K
. 

 

For the minimum such m, m
 
=

 
M, say, MS(N

 
+

 
M

 
–

 
1) is attained at the point k

 
=

 
K but     

MS(N
 
+

 
M) is attained at k

 
=

 
K

 
+

 
1, with 

 

MS(N
 
+

 
M) – MS(N

 
+

 
M

 
–

 
1)

 
=

 
3

K
. 

 

Thus, corresponding to the integer K
 
+

 
1, we find an integer, namely, N

 
+

 
M, such that the 

function MSM(N
 
+

 
M) is attained at k

 
=

 
K

 
+

 
1. 

 

Let the sequence of numbers  1nna  be defined by 

 

an =
 
MS(n)

 


 
MS(n

 


 
1), n

 
≥

 
1.                                              (2.5) 

 

Let mj ≥ 1 be the integer, defined as follows : 

 

,0 j ;3.2)1m(MS)m(MSa
j
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with 

m0 =
 
1, m1 = 3. 

 

Then, MS(mj – 1) is attained at k = j, and for all n with mj ≤ n ≤ mj+1 – 1, MS(n) is attained at 

k
 
=

 
j + 1. 

 

Let the integers kj ≥ 1 be defined as follows : 
 

,0 j ;2.2)1k(MS)k(MSa
j
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j
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with 

k0 =
 
1, k1 = 2. 
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The result below is due to Majumdar [4]. 

 

Lemma 2.6 : For all j
 
≥

 
1, MS(kj) is attained at k = kj  kj       1. 

 

Let the sequence of numbers  1nnb , arranged in (strictly) increasing order, be defined as 

follows : 

 

bn =
 
2

i 
3

m
; i

 


 
0, m

 


 
0.                                                          (2.6) 

 

The first few terms of the sequence  1nnb are 

 

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 214, … .                              (2.7) 

 

Lemma 2.7, due to Matsuura [5], gives a recurrence relation satisfied by   1nnb . 

 

Lemma 2.7 : Let n be such that 2
i 
<

 
bn <

 
2

i  +  1
 for some integer i ≥ 1. Then, 

 

      bn   =    3bn     i    1. 

 

Note that, in order to use the recurrence relation given in Lemma 2.7 above, we have to 

find j such that 2
i 
<

 
bn <

 
2

i  +  1
. However, in the current literature, this is not available, and 

remains an open problem. 

 

The solution of the recurrence relation (1.1), proposed by Stockmeyer [1], is given below. 

 

Theorem 2.1 : For n
 
≥

 
1, MS(n) is attained at the (unique) point 1,k
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As has already been mentioned, the argument given by Stockmeyer [1] in proving Theorem 

2.1 is heuristic. Moreover, since both MS(n) and the point k at which MS(n) is attained 

involve the sequence of numbers  1nnb , from the point of view of application, Theorem 

2.1 is of no use to find MS(n) nor the point k at which MS(n) is attained. For small values 

of n, MS(n) may be calculated readily, using Theorem 2.1 as well as the values listed in 

(2.7). For example, from (2.7), we see that b10 = 18, so that, by Theorem 2.1, MS(10) is 

attained at k
 
=

 
3 with MS(10)

 
=

 
158. But for large n, Theorem 2.1 is not applicable, since the 

recurrence relation given in Lemma 2.7 can not be applied. To circumvent this drawback, 

we give a recursive algorithm in the next Section 3, which calculates MS(n) recursively in 

n. 
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3.  Computational Aspect 

 

From Corollary 2.1, we see that, if MS(n) is attained at the point k
 
=

 
k1 and MS(n

 
+

 
1) is 

attained at the point k
 
=

 
k2, then, k1 ≤

 
k2 ≤ k1 +

 
1. This result enables us to calculate 

recursively the value(s) of k at which MS(n) is attained, as well as the values of MS(n). 

Thus, if MS(n – 1) is attained at k = K, then MS(n) is attained either at k
 
=

 
K, or else, at k

 
=

 

K
 
+

 
1, so that the problem of finding MS(n) and the value of k at which MS(n) is attained 

reduces to the problem below 

 

    MS(n) = min
 
{2MS(N

 
–

 
K) + 3

K 
–

 
1, 2MS(N

 
–

 
K

 
–

 
1) + 3

K + 1
 – 1}.            

 

To start with, we note that, MS(1)
 
=

 
2, and MS(2) is attained at the unique point k = 1, with 

MS(2)
 


 
6 and k(2)

 
=

 
1. We have the following result. 

 

Lemma 3.1 : For n
 


 
3, MS(n) is attained at k

 


 
2. 

 

Proof. We first consider the function 

 

  FS(3,
 
k)

 
=

 
2MS(3

 
–

 
k)

 
+

 
3

k 
–

 
1, 1

 


 
k

 


 
3. 

Since 

  FS(3,
 
1)

 
=

 
2MS(2)

 
+

 
2

 
=

 
14

 
>

 
FS(3,2)

 
=

 
2MS(1)

 
+

 
8

 
=

 
12, 

 

it follows that MS(3) is attained at a point k
 


 
2. The result now follows for all n

 


 
3, by 

virtue of Corollary 2.1. 

 

The algorithm to find the value of k at which MS(n) is attained as well as the value of     

MS(n) is given below.  

 

Algorithm 3.1 : Algorithm to find MS(n) and the point k at which MS(n) is attained 

 

/ NN pre-determined integer / 

 

For n = 1, 2, ..., NN 

 

S(n) = 3
n
 – 1  

 

/ Initialization / 

 

MS(1) = 2 

 

MS(2) = 6 

 

k(2)
 
=

 
1 

 

/ Determination of MS(n) and k(n) / 
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For n = 3, 4, ..., NN 

 

k = k(n – 1) 

 

T1 = 2MS(n – k) + S(k) 

 

T2 = 2MS(n – k – 1) + S(k
 
+

 
1) 

 

If T1 < T2 then 

 

MS(n) = T1 

 

k(n) = k 

 

else 

 

MS(n) = T2 

 

k(n) = k +
 
1 

 

In Algorithm 3.1 above, the quantities T1 and T2 are compared to find MS(n) and then is 

determined the point k at which MS(n) is attained. For example, to find MS(3) 

(corresponding to n
 
=

 
3) and the point k at which MS(3) is attained, the algorithm sets 

 

k
 
=

 
k(2)

 
=

 
1, 

 

and then calculates T1 and T2 as follows : 

 

  T1
 
=

 
2MS(2)

 
+

 
S(1)

 
=

 
14, 

 

  T2
 
=

 
2MS(1)

 
+

 
S(2)

 
=

 
12. 

 

Since T2
 
<

 
T1, it follows that MS(3)

 
=

 
12 with k(3)

 
=

 
2. 

 

Algorithm 3.1 calculates MS(n) recursively for 3
 


 
n

 


 
NN. To do so, we need the values of 

S(n) for 1
 


 
n

 


 
NN for the calculation of T1 and T2. Note that S(n) grows very rapidly; 

however, it is sufficient to calculate S(n) for 1
 


 
n

 


 
NN/2. 

 

Now, note that 

 

T1 – T2
 
=

 
2[MS(n – k) – MS(n – K – 1)] – 2.3

k
. 

Thus, 

T1
 
< T2 if and only if MS(n – k) – MS(n – k – 1)

 
<

 
3

k
. 

 

This observation leads to a second recursive algorithm, given below. 
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Algorithm 3.2 : Algorithm to find MS(n) and the point k at which MS(n) is attained 
 

/ NN pre-determined integer / 

 

For n = 1, 2, ..., NN 

 

S(n) = 3
n
 – 1  

 

/ Initialization / 

 

MS(1) = 2 

 

MS(2) = 6 

 

k(2)
 
=

 
1 

 

/ Determination of MS(n) and k(n) / 

 

For n = 3, 4, ..., NN 

 

k = k(n – 1) 

 

M
 
=

 
MS(n – k) – MS(n – k – 1) 

 

If M < 3
k
 then 

 

k(n) = k 

 

MS(n) = 2MS(n – k(n))
 
+

 
S(k(n)) 

 

else 

k(n) = k
 
+

 
1 

 

MS(n) = 2MS(n – k(n))
 
+

 
S(k(n)) 

 

In Algorithm 3.1 and Algorithm 3.2, we start with the following expression : 

 

   MS(n
 
–

 
1)

 
=

 
2MS(n

 
–

 
k

 
–

 
1)

 
+

 
3

k 
–

 
1, 

 

and then proceed to find MS(n). Note that, by assumption, MS(n
 
–

 
1) is attained at k. Now, 

if MS(n) is attained at k
 
+

 
1, then 

 

  MS(n)
 
=

 
2MS(n

 
–

 
k

 
–

 
1)

 
+

 
3

k + 1 
–

 
1, 

so that 

  MS(n) – MS(n
 
–

 
1)

 
=

 
2.3

k
, 
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giving 

MS(n)
 
=

 
MS(n

 
–

 
1)

 
+

 
2.3

k
.                                                   (*) 

 

On the other hand, if MS(n) is attained at k, then 

 

MS(n)
 
=

 
2MS(n

 
–

 
k)

 
+

 
3

k 
–

 
1, 

 

which gives 

 

MS(n) – MS(n
 
–

 
1)

 
=

 
2[MS(n

 
–

 
k) – MS(n

 
–

 
k

 
–

 
1)]. 

Then, 

MS(n)
 
=

 
MS(n

 
–

 
1)

 
+

 
2[MS(n

 
–

 
k) – MS(n

 
–

 
k

 
–

 
1)].               (**) 

 

Using the expressions of MS(n), given in (*) and (**) respectively, the calculations of 

MS(n) in Algorithm 3.2 may be simplified. Thus, for example, starting with the fact that 

MS(2) is attained at k
 
=

 
1 with MS(2)

 
=

 
6, for n

 
=

 
3, we see that 

 

M
 
=

 
MS(3 – 1) – MS(3 – 1 – 1)

 
=

 
MS(2)

 
–

 
MS(1)

 
=

 
4

 
>

 
3. 

 

Hence, MS(3) is attained at k
 
=

 
2, with 

 

MS(3)
 
=

 
MS(2)

 
+

 
23

 
=

 
12. 

 

Incorporating these facts in Algorithm 3.2, we get the following version. 

 

Algorithm 3.3 : Algorithm to find MS(n) and the point k at which MS(n) is attained 

 

/ NN pre-determined integer / 

 

/ Initialization / 

 

MS(1) = 2 

 

MS(2) = 6 

 

k(2)
 
=

 
1 

 

/ Determination of MS(n) and k(n) / 

 

For n = 3, 4, ..., NN 

 

k = k(n – 1) 

 

M
 
=

 
MS(n – k) – MS(n – k – 1) 
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If M < 3
k
 then 

 

k(n) = k 

 

MS(n) = MS(n
 
–

 
1)

 
+

 
2M 

else 

k(n) = k
 
+

 
1 

 

MS(n) = MS(n
 
–

 
1)

 
+

 
2.3

k
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