
J. J. Math. and Math. Sci., Vol. 31, December, 2018, 49-60 

SPACE-TIME BASED RLC MODEL FOR GAS FLOW SIMULATION  

 
M. U. AHMMED

1
, SHARMIN AKTER

2
, SADIYA AKHTER

3
 AND KAMRUNNAHAR

4 

 
1
Department of Mathematics, Jahangirnagar University, Dhaka-1342, Bangladesh 

 
2
Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh 

 
3
Department of Quantitative Science, International University of Business Agriculture and  

 Technology, Dhaka, Bangladesh 
 
4
Department of Natural Science, BGMEA University of Fashion and Technology, Dhaka,  

 Bangladesh 

 

 
Abstract 

 

Flow simulation along human lung of respiratory patient is one of the burning issues in 

biomechanical engineering field. Fluid flow through 18
th

 generation is our interest of investigation. 

In this region flow is parabolic and the rate of gas exchange is notable. Lumped parameter model is 

modified to PDE form to investigate the flow rate ),( txq  instead of )(tq . Initially parabolic flow 

condition is set for numerical simulation. The quasi parabolic flow is examined for a second. 

However, the flow is found diminished within a few second when preexisting forced is not renewed. 

This was due to strong resistive force of model channel for dimension mm 4.5  mm2.1  .  

 
1. Introduction  

 

The lung is morphologically consisted of a complex network, which is successively 

bifurcated from trachea to the alveolar zone. Because of its complexities, in-vivo 

inspection of pulmonary flows is deemed impossible. So, the inspection should be 

conducted by a suitable modeling, analogical analysis or numerical calculations. Most of 

the transportation of fluid in physical problem to biological system occur in advection and 

diffusion process according to the model 
xxxt Dquqq  , where ),( txq flux, D = the rate 

of diffusion and u= the mean flow velocity. Water pollution in oceans, rivers, lakes or 

ground water and pollution in atmosphere take place continually in surroundings. It is 

essential to know the contaminant or temperature distribution in the water for safety of the 

environment [1]. This type of problem describes transport and diffusion process can be 

modeled using one dimensional advection diffusion equation (ADE). ADE illustrates many 

quantities such as mass, velocity, heat and energy [2]. Many authors are involved in 

solving ADE by using finite difference method (FDM).The mathematical model of water 

pollution is solved using implicit centered difference scheme in space and forward 

difference method in time by [3]. Aral and Liao [4] solved for two-dimensional transport 

equation with time dependent dispersion coefficients analytically. Kumar et al. [5] 
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presented analytical solution of one dimensional ADE with variable coefficients in a finite 

domain using Laplace transformation. Stability analysis of finite difference scheme for 

solving ADE is studied by [6-9]. As stated above, most of the works has been done for 

open channel. But ADE has wide applications in other disciplines too, like biosciences, soil 

physics, petroleum engineering and chemical engineering. In vivo, fluid (liquid or gas) 

moves along closed channel and flow might be transported to downstream by advection or 

spread out by diffusion when unidirectional flow is weaken. For example, a complete cycle 

of respiration in human lung channel is a consequence of oscillatory flow (advection) and 

stagnation in transition (diffusion) in nature. Oscillatory flow and mass transport was 

studied along model channel of human lung by [10, 11]. They simulated governing 

equations with boundary conditions to show effective diffusion along straight tube. 

Laminar, turbulent and oscillatory dispersion along a circular channel is calculated by [12]. 

He established a relation between channel radius and diffusion coefficient. Tanaka et al. 

[13] examined that a secondary flow during HFOV method ensures effective diffusion in 

bent and bifurcated tubes than in straight tube. A lamped-parameter model has been 

developed to study airflow distribution by Elad et al. [14] .The authors also derived the 

modified time-dependent expressions of resistance and compliance of a single 

compartment. Numerical analysis of air flow along lung channel with asymmetric 

compliance was examined experimentally and numerically by Hirahara et al. [15]. We 

found that the flow for inhomogeneous compliance ratio leads to irreversible flow along 

lung model. This type of flow effect might be the result of diffusion. Very recently, a 

numerical study on advection diffusion equation for lung model is published [16]. The 

effect of inductive time constant is investigated for lung model. 

 
With the above discussions, in this paper, time and space based physical domain is taken in 

consideration instead of lumped parameter model. Explicit finite difference scheme is 

employed to solve the computational model. The results for parabolic flow condition is 

investigated and presented graphically.  

 
2. Anatomy of Human Lung and Parameters 

 

According to the respiratory function and its anatomical configuration, the lung is divided 

into two regions; air transport and gas diffusion regions. The airways from trachea (G0, G 

is for generation) to the terminal bronchioles (G16) is bifurcated repeatedly and gas is 

transported without any gas exchange. Then, the volume is called as the anatomical dead 

space. Gas diffusion is dominated in the bottom of the lung. The respiratory zone (G17 to 

G23) having respiratory bronchioles, alveolar ducts and alveolar sacs plays a role of gas 

exchanger. A numerous networks of tubes from the terminal bronchiole to the most distal 

alveolus contain about 2.5 to 3 liters of air whereas the standard adult lung contains about 5 

liters of air. Active gas mixing and exchange will be expected in the alveolated respiratory 

region to maintain the effective molecular diffusion.  
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When we use HFOV for the treatment, an oscillatory flow is induced in the deep region of 

lung, from G17 to G23. In general, the oscillatory flow is characterized with Stokes layer 

thickness 

 

 /  (1) 

  

where   (= 1.513 ×10
-5 

m
2
/s, 20 degrees in Celsius for air) and    (=2πf , f is the 

frequency)  are kinematic viscosity and angular frequency of oscillatory flow, respectively. 

And also, the flow is represented with two fundamental dimensionless parameters, 

Reynolds number,  

 

/UDRe   (2) 

 

and Womersley number  

 

 /)2/(D  (3) 

 

Re  decreases from trachea to bottom, 4000 at the trachea, 30 at terminal bronchus and 

less than 0.04 in the alveolar region under a normal breathing condition,   represents the 

ratio of inertia term to viscous term where the value of    is important to consider the 

near wall flow. 
 

3. Quantification of Lung Tree 

 

According to idealization of the human airways, the important non-dimensional parameters 

for normal breathing condition can be calculated in flow field as depicted in Table 1. The 

acoustic Reynolds number in this table is a non dimensional quantity based on boundary 

layer thickness and is defined as  

 

/2Re maxu .  

 

The adult trachea has a mean diameter of 1.8 cm and length of 12 cm. An external pressure 

of the order of 4 kPa (40 cmH2O) is sufficient to occlude the trachea. Main, lobar and 

segmental bronchi are bifurcated from G1 to G4. The trachea bifurcates asymmetrically, 

with the right bronchus being wider and making a smaller angle with the long axis of the 

trachea. The small bronchi (G5 to G11) extend through about seven generations with their 

diameter progressively falling from 3.5 mm to 1 mm. An important change occurs at about 

the 11th generation where the internal diameter is about 1 mm. The caliber of the airways 

below the 11th generation is influenced mainly by lung volume. The number of 

bronchioles from G12 to G14 increases far more rapidly than the calibre diminishes. 

Therefore, the total cross-sectional area increases until, in the terminal bronchioles (G15), 
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it is about 100 times the area at the level of the large bronchi. Thus the flow resistance of 

these smaller air passages (less than 2 mm diameter) is negligible under normal conditions. 

However, the resistance of the bronchioles can increase to very high values down to the 

terminal bronchiole. According to the dichotomy model of human lung, the respiratory 

bronchioles, alveolar ducts and alveolar sacs construct a respiratory zone (G17 to G23) 

where conduction and diffusion take place in gas transportation. The transition from 

convection to diffusion occurs at the beginning of respiratory zone. The upper 16 

generations make up the conducting zone or dead space. In respiratory zone, there is a 

gradual increase in number of alveoli so that gas exchange occurs here. The last generation 

(G23) is filled with alveolar sacs. It is estimated that every alveolar sac is consisted of 

about 17 alveoli. 

 

As rough approximations it may therefore be assumed that the number of passages in each 

generation is double that in the previous generation, and the number of air passages in each 

generation is approximately indicated by 2
n
, n be the number of generation. This formula 

indicates one trachea, two main bronchi, four lobar bronchi, 16 segmental bronchi etc. 

Pairs of daughter bronchi are often unequal in size and trifurcations may be demonstrated. 

The adult trachea (G0) and the alveolar sac (G23) have a mean diameter of 1.8cm, 0.04 cm 

and length of 11cm, 0.05 cm respectively.  

 

For mammals including humans, the respiratory system can be subdivided into an upper 

respiratory tract and a lower respiratory tract based on anatomical features. The upper 

respiratory tract includes the nasal passage, pharynx and the larynx, while the lower 

respiratory tract refers to the portions of the respiratory system from the trachea to the 

lungs. The respiratory system can also be divided into physiological or functional zones. 

These include the conducting zone (the region for gas transport from the outside 

atmosphere to just above the alveoli), the transitional zone and the respiratory zone (the 

alveolar region where gas exchange occurs). The upper respiratory tract is part of the 

conducting zone. The upper and lower respiratory tracts make up our whole respiratory 

system and work in a synchronizing pattern to make it possible to breathe.  The lower 

respiratory tract is a vital system. This tract is responsible for receiving oxygen and 

distributing it thought-out our whole body through the interface of lung and capillary tube 

walls. If the lower respiratory tract shuts down, the body can’t receive this vital oxygen and 

leads to severe brain damage and death. 
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Table 1: Approximate quantification of the human bronchial system (Weibel’s model) 

 

 

According to the measurement of lung tree and its anatomy the human airways of lung are 

shown in figure 1. It is drawn by performing calculation of  Weibel’s  real data analysis for 

adult lung. 

  

 G Number 

Mean 

diameter 

[mm] 

Length 

[mm] 

Volume 

[ml] 

Acoustic 

Re 
Re Wo 

Trachea 0 1 18.00 120.00 30.54 402.01 1480 2.60 

Main 

Bronchus 
1 2 12.20 47.60 11.13 437.55 1092 1.76 

Lobar 

bronchus 

2 4 8.30 19.00 4.11 472.68 803 1.20 

3 8 5.60 7.60 1.50 519.17 595 0.81 

Segmental 

bronchus 
4 16 4.50 12.70 3.23 402.01 370 0.65 

Bronchi w/ 

cartilage in 

wall 

5 32 3.50 10.70 3.29 332.27 238 0.51 

6 64 2.80 9.00 3.55 259.59 149 0.41 

7 128 2.30 7.60 4.04 192.36 91 0.33 

8 256 1.96 6.40 4.94 132.44 53 0.28 

9 512 1.54 5.40 5.15 107.27 34 0.22 

10 1024 1.30 4.60 6.25 75.26 20 0.19 

Terminal 

bronchus 
11 2048 1.09 3.90 7.45 53.53 12 0.16 

Bronchiole 

w/ muscle 

in wall 

12 4096 0.96 3.30 9.78 34.50 6.78 0.14 

13 8192 0.82 2.70 11.68 23.65 3.97 0.12 

14 16384 0.74 2.30 16.21 14.52 2.20 0.11 

15 32768 0.66 2.00 22.42 9.13 1.23 0.10 

Terminal 

bronchiole 
16 65536 0.60 1.65 30.57 5.52 0.68 0.09 

Respiratory 

bronchiole 

17 131072 0.54 1.41 42.33 3.41 0.38 0.08 

18 262144 0.50 1.17 60.22 1.99 0.20 0.07 

19 524288 0.47 0.99 90.05 1.12 0.11 0.07 

Alveolar 

duct 

20 1048576 0.45 0.83 138.42 0.61 0.056 0.07 

21 2097152 0.43 0.70 213.18 0.34 0.030 0.06 

22 4194304 0.41 0.59 326.72 0.18 0.015 0.06 

Alveolar sac 23 8388608 0.41 0.50 553.75 0.09 0.008 0.06 

Alveoli. 21 

per duct 
 3E+0 0.E+2 0.E+3      
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4. Mathematical Model of the System 

 

4.1: Mathematical Model of Lung Tree 

 

From trachea to alveolar sacs, the lung tree is divided into 23 times and the junction of tree 

is increased exponentially as in figure 1. The lung tree is formed by bifurcation of each 

branch and the total number of generation is 23.  

 

The number of branches at n-th generation is  

 



 nbifurcatiofor 2

23,2,1,0

)(







b

n

bnN n

  

(4) 

 

The gradient of bifurcation at n-th generation is  

 

69.0,

ln





rrN

bNN
 

(5) 

 

 

Figure 1:  Idealization of the human airways (according to Weibel, 1963) 
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The average length of each branch is  

 





23

024

1

n
nlL  

(6) 

 

The average diameter of each branch is  

 





23

024

1

n
ndD  

(7) 

 

The average volume of each branch is  

 

2

4
DLV


  

(8) 

 

The total area of entire lung is  

 

bdnnNA

n

 
0

)(  
(9) 

 

Where b is the initial area (area of trachea or zero generation).  

 

4.2: Formation of Governing Equation  

 

A model channel of human lung with compliance C (flexibility) and resistance R is taken 

under consideration. An oscillatory flow with fluid velocity u is passing along the model 

channel and inertial effect L raise. If q(t) is the flow rate and P  is the driving force then 

the lumped parameter model by Elad et al. [14]  is  

 

  pdtq
i

i
ii

i
i C

qR
dt

dq
L

1  
(10) 

 

Where the flow rate, resistance, inertance and compliance of i-th channel are qi, Ri, Li, and 

Ci respectively, )sin(
0

  tPP  is the driving force for the pressure amplitude, P0 and 

f 2  where f is the number of oscillation at the inlet of channel. 

 

Differentiating Eqn. (10) and executing some algebra, a second order ODE is obtained 

which exhibits time varying effect of flow only. It is a crying need to have a flow 

simulation for spatial and temporal quantities such that ),( txqq  . The following 

substitutions are integrated for space-time equation of the model.  
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In absence of driving force (during transition), Eqn.(2) contributes   

 

 

 

Disregarding the compliance of channel (rigid model), Eqn.(12) becomes 

 

 

 

Where RueRdLucLubLa   and ,,2, 2
. 

 

Here acb 42  confirms that Eqn.(13) is parabolic. Moreover, it befalls parabolic after 

ignoring mixed term and the rate of flow rate whose effect is unimportant in the system. 

Since the resistive force is opposite to the main flow, d is always positive. According to the 

above mentioned considerations, the governing equation of the dynamical problem is:  

 

 

 

 

which is a one dimension advection-diffusion equation with inductive time constant. The 

first term is local accumulation, the second term is movement by carrying fluid and the last 

term is movement by random motions in the fluid. 
 

4.3: Computational Model of the System 

 

The unsteady incompressible flow along a rigid channel without driving force and 

compliance effect is an advection-diffusion Eqn.(14).  In physical domain of channel 

length ( lx 0  ), this one-dimensional transport equation as initial boundary problem 

can be written as  

 

 

 

 

 

 

txttxx

tx

uqqqu
dt

qd

quq
dt

dq

22

2

2





 (11) 

xtxxtxtt RuqRqCqqLuLuqLq  /2 2  (12) 

xtxxtxtt eqdqcqbqaq   (13) 

RLuD

Dquqq xxxt

/2


 (14) 

Ttthtlqtgtq

lxxqxq

Dquqq xxxt







0),(),(),(),0(

0),()0,( 0
 (15) 
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In order to obtain computational scheme by finite difference method (FDM), we discretize 

the space-time plane with mesh size .tx   Space size and time steps are taken equal 

individually. The spatial and temporal coordinate at the grid point ),( ji txq is defined as 

njtjtt

mixixx

j

i

,,2,1,0;

,,2,1,0;

0

0









 

The approximate solution at grid points ),( ji txq is 
n

ji Rq ,  so that ).,(, jiji txqq 
  

 

Employing finite difference scheme with  forward time difference, backward space 

difference and symmetric space difference, the system of equations is 

 

 

 

 

Dropping the truncation error terms and rearranging, we can explicitly solve for time level 

that implies 

 

 

 

 

 

 

 

The von Neumann simultaneous stability condition for the scheme [17] is 0 sr  and 

021  sr  which correspond to 2/10  s  and srs 21 . This condition 

controls the time increment by 
Dxu

x
t

2

2




  where D for rate of mass diffusion and u 

is the flow speed.  

 
5. Results and Discussions of Parabolic Flow 

 

The numerical experiment is performed for parabolic flow in initial stage along 18
th
 

generation of model channel. It is continued for 1 second maintaining parametric 

conditions of lab experiment. Then the flow conditions are observed in different time 

fractions for free dynamics, say t = 0,  t =1/4,  t = 3/8, t=1/2, t=5/8, t = 1 seconds etc. Here 

T0 is for t = 0, T1 is for t = ¼,  T2  is for t = 3/8,  T3 is for  t = ½, T4 is for t = 5/8, T5 is 

for t = 1. We observed that the flow rate is first increased and then decreased to zero for the 

change of time within one second due to the effect of high resistance of the narrow and 

compliant channel as shown in figure.2.    
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(16) 
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Figure 2: Flow behavior in 18

th
 generation of model in 1second 

 

If the experiment is continued for 6s, the flow rate seems to be constant as depicted in 

figure 3. . Because, the momentum is finite and is not being renewed by any external force 

and the flow will be opposed by resistance and recoil force (compliance) of alveoli. It is 

also found that the flow rate tends to zero. The numerical experiment shows that the only 

driving force which keeps some flow at this phase is internal force due to the inertial 

effect. This momentum of flow arose by virtue of the pre-existing velocity with which the 

experiment was started. Since this momentum is finite and is not being renewed by any 

external force, it is ultimately exhausted and the fluid comes to rest and the flow rate 

becomes zero. 

 
Figure 3:  Flow behavior in 18

th
 generation of model in 6 seconds. 
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6. Conclusion 

 

We conduct the numerical experiment for air flow simulation along human lung of 18
th
 

generation. For this, the initial flow condition is taken parabolic. Before numerical 

simulation, the governing equation of lumped model is introduced in PDE governing form. 

Explicit finite difference scheme is incorporated to compute the mathematical model. 

Three flow phenomena are tasted entire the experiment such as parabolic flow (initially), 

quasi parabolic flow (within a second) and constant flow (within a few second). Also, the 

zero flow is evident for time being due to free dynamics. 
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