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Abstract 

 

In an earlier paper, the solutions of the Diophantine equations a
2  

= b
2 

+ c
2 
 bc, which arise in 

connection with the 60-degree and 120-degree S-related and Z-related triangles, were studied to 

some extent. This paper considers the Diophantine equation x
2 

= y
2 

+ 3z
2
, which unravels some new 

facts about the solutions of the Diophantine equations a
2 
= b

2  
+ c

2  
 bc. 
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1. Introduction 
       

Let T(a,
 
b,

 
c) the the triangle ABC with sides a

 
=

 
BC, b

 
=

 
AC, c

 
=

 
AB. The following 

definition is due to Sastry [1] and Ashbacher [2]. 

 

Definition 1.1 : Two triangles T(a,
 
b,

 
c) and T(a,

 
b,

 
c) are said to be S-related if 

 

S(a)
 
=

 
S(a), S(b)

 
=

 
S(b), S(c)

 
=

 
S(c); 

  

and they are said to be Z-related if 

 

Z(a)
 
=

 
Z(a), Z(b)

 
=

 
Z(b), Z(c)

 
=

 
Z(c), 

 

where S(n) is the Smarandache function, and Z(n) is the pseudo Smarandache function. 

 

Of particular interest are the 60 degrees and 120 degrees triangles that are Z-related or      

S-related (in the sense of Definition 1.1). Studying on the this problem, Majumdar [3] has 

found that such pairs of triangles lead to the Diophantine equations 
 

a
2   

= b
2  

+ c
2   
  bc. 

 

In [4], Majumdar gives a partial solution to the above equations. This paper considers the 

more general Diophantine equation x
2 

= y
2 

+ 3z
2
. This is done in Section 3. Some 

preliminary results are given in Section 2. We conclude the paper with some observations 

and remarks in the final Section 4. 
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2. Some preliminary results 
 

The following two lemmas give respectively the conditions satisfied by the 60 degrees and 

120 degrees triangles. The proofs are given in Majumdar [3].      
  

                    
 

 
        

 

 
 

Clearly, a
 
=

 
b

 
=

 
c is a solution of the Diophantine equation (2.1), called its trivial solution. 

For non-trivial solutions, as has already been observed in Majumdar [3], when A = 60
0
, 

min
 
{b, c}

 


 
a

 
 max

 
{b, c}; and if A =

 
120

0
, then a is the largest side of the triangle ABC. 

Thus, if (a0,
 
b0,

 
c0) is a solution of the Diophantine equation 4a

2 
=

 
(2c

 
–

 
b)

2 
+

 
3b

2
, then, 

without loss of generality, we may assume that 
  

c0 < a0 < b0.                          
                                                                                 

             (2.3)                                   
       

The lemma below shows that the Diophantine equation 4a
2 

=
 
(2c

 
–

 
b)

2 
+

 
3b

2
 possesses 

(independent) solutions in pair, namely, (a0,
 
b0,

 
c0) and (a0,

 
b0,

 
b0 – c0). Note that, by 

symmetry, (a0,
 
c0,

 
b0) and (a0,

 
b0 – c0,

 
b0) are also solutions of the Diophantine equation. 

     

Lemma 2.3 : If (a0,
 
b0,

 
c0) is a solution of the Diophantine equation  

 

4a
2 
=

 
(2c

 
–

 
b)

2 
+

 
3b

2
,                           

                       
              

       

then (a0,
 
b0,

 
b0 – c0) is also a solution of the Diophantine equation (2.2). 

 

Next, we confine our attention to the Diophantine equation 

 

4a
2 
=

 
(2c

 
+

 
b)

2 
+

 
3b

2
.                          

                             
              

 

 

The following lemma, due to Majumdar [3], gives the relationship between the solutions of 

the Diophantine equations (2.1) and (2.2). 
       

A 
 

B 
 

C 
 

b 
 

a 
 

c 
 

120
0 

 

A 
 

60
0 

 

b 
 

a 
 

C 
 

B 
 

Lemma 2.1 : Let T(a,
 
b,

 
c) be a triangle with 

sides a, b and c, whose A =
 
60

0
 (as shown in 

the figure). Then, 
 
 

4a
2 
=

 
(2c

 
–

 
b)

2 
+

 
3b

2
.       (2.1) 

Lemma 2.2 : Let T(a,
 
b,

 
c) be a triangle with 

sides a, b and c, whose A =
 
120

0
 (as shown 

in the figure). Then, 
 

 

4a
2 
=

 
(2c

 
+

 
b)

2 
+

 
3b

2
.       (2.2) 

c 
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Lemma 2.4 : If (a0,
 
b0,

 
c0) is a solution of the Diophantine equation 4a

2 
=

 
(2c

 
–

 
b)

2 
+

 
3b

2
, 

then (a0,
 
b0 – c0,

 
c0) is a solution of the Diophantine equation 4a

2 
=

 
(2c

 
+

 
b)

2 
+

 
3b

2
.                          

                             
              

 

Note that, the Diophantine equations (2.1) and (2.2) are equivalent to the Diophantine 

equations 

 

a
2  

= b
2  

+c
2  
 bc,                           

                                          
              

 

and by virtue of Lemma 2.4, it is sufficient to concentrate on the Diophantine equation 

 

a
2  

= b
2 
+c

2 
– bc                                                 (2.4) 

only.  

 

In Majumdar [3], it has been pointed out that, in certain cases, the Diophantine equation 

(2.1) has more than two independent solutions. For better understanding of the situation, 

we consider the more general Diophantine equation 

 

x
2 
= y

2 
+ 3z

2
.                                                    (2.5) 

 

Note that the Diophantine equation (2.1) is a particular case of the above equation with 

 

x = 2a, y = 2b – c, z = c.                                           (2.6) 

 

It may be mentioned here that, when b
 
<

 
c, we may still consider the above equation (2.5) 

with the roles of b and c interchanged. 

 

In the next section, we study the Diophantine equation (2.5) more closely.  

 
3. The Diophantine Equation x

2 
=

 
y

2 
+

 
3z

2
 

 

In this section, we consider the Diophantine equation  

  

x
2 
= y

2 
+ 3z

2
.                                                                       (3.1) 

 

For example, when x
 
=

 
14

 
=

 
2×7, there are three (independent) solutions of (3.1), as shown 

below : 

14
2 
=

 
13

2 
+

 
3.3

2 
=

 
11

2 
+

 
3.5

2 
=

 
2

2 
+

 
3.8

2
,                               (1) 

 

which in turn shows that, corresponding to x
 
=

 
7, there is only one solution. 

 

The relationship between the solutions of the Diophantine equations (3.1) and (2.4) is 

expressed in the lemma below. 

 

Lemma 3.1 : Let (x0,
 
y0,

 
z0) be a solution of the Diophantine equation x

2 
=

 
y

2 
+

 
3z

2
. Then, 

(a0, b0, c0) is a solution of the Diophantine equation a
2 
=

 
b

2 
+

 
c

2 
–

 
bc, where 



4 A.A.K. Majumdar 

 

.  ),(
2
1

000000 zczyb  ,a
2
0x

  

 

Proof.  Follows from (2.6), noting that y0 = 2b0 – c0 > 0 when b0 > c0.  

 

It may be mentioned here that Lemma 3.1 may be applied when c0 >
 
b0, by interchanging 

the roles of b0 and c0. 

 

Now, given a solution (x0,
 
y0,

 
z0) of the Diophantine equation (3.1), its solution when         

x = x0
2
 may be found as follows.  

 

Lemma 3.2 : Let (x0,
 
y0,

 
z0) be a solution of the Diophantine equation x

2 
=

 
y

2 
+

 
3z

2
. Then, 

(x0
2
, |

 
y0

2 
– 3z0

2 
|, 2y0 z0) is also a solution of it. 

 

Proof.  Writing (y
2 
+

 
3z

2
)

2
 in the form below : 

 

(y
2 
+

 
3z

2
)

2 
=

 
(y

2 
–

 
3z

2
)

2 
+

 
12 y

2 
z

2 
=

 
(y

2 
–

 
3z

2
)

2 
+

 
3(2yz)

2
, 

 

the result follows immediately. 

 

If (x0, y0, z0) is a solution of x
2 

=
 
y

2 
+

 
3z

2
, then obviously (x0

2
, x0 y0, x0 z0) is also its one 

solution; Lemma 3.2 gives another independent solution of it. For example, starting with 

the solution, given in (1), we get, by Lemma 3.2, three solutions when x
 
= 14

2
, namely, 

 

(14
2
, 142, 78), (14

2
, 46, 110), (14

2
, 188, 32), 

 

the last one giving the solution (7
2
, 47, 8). Thus, corresponding to x

 
=

 
14

2
, there are, in 

total, six solutions of the Diophantine equation (3.1) 

 

Proposition 3.1 : Let (a0, b0, c0) be a solution of the Diophantine equation a
2 

=
 
b

2 
+

 
c

2 
–

 
bc. 

Then, (a0
2
, b0

2 
–

 
c0

2
, c0(2b0 –

 
c0)) is also a solution of it. 

 

Proof.  By Lemma 3.1, 

 

.  ),(
2
1

000000 zczyb  ,a
2
0x

  

 

Now, by Lemma 3.2, if (a1, b1, c1) is a solution of (2.1) corresponding to a
 
=

 
a1 =

 
a0

2
, then 

.  ,
0 01

2

0

2

011

2
0

1 zy2cz3yc  b2  ,a
2

x
  

 

Therefore, if y0
2 
–

 
3z0

2 
>

 
0, then 

 

2b1 =
 
2y0 z0 +

 
(y0

2 
–

 
3z0

2
)

 
=

 
(z0 +

 
y0)

2 
–

 
4z0

2 
=

 
4(b0

2 
–

 
c0

2
), 

so that 
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b1 =
 
2(b0

2 
–

 
c0

2
); 

also, 

a1 =
 
2a0

2
, c1 =

 
2c0(2b0 –

 
c0). 

 

Now, disregarding the common factor 2, the result follows.  

 

If the solution (x0, y0, z0) of the Diophantine equation is known, then using Lemma 3.1, we 

may find the corresponding solution of the Diophantine equation (2.1). And if a solution 

(a0, b0, c0) of the Diophantine equation (2.1) is known, Proposition 3.1 may be employed to 

find the solution corresponding to a
 
=

 
a0

2
. For example, from the first two solutions given in 

(1), we get (by Lemma 3.1) 

 

a0 =
 
7, b0 =

 
8, c0 =

 
3,                                              (2) 

 

a0 =
 
7, b0 =

 
8, c0 =

 
5,                                              (3) 

 

while the third one in (1) gives, after interchanging the roles of b0 and c0, 

 

a0 =
 
7, b0 =

 
3, c0 =

 
8. 

 

Now, applying Proposition 3.1 to the solution (2), we get 

 

a1 =
 
7

2
, b1 =

 
55, c1 =

 
39,                                           (4) 

 

while (3) gives 

 

a1 =
 
7

2
, b1 =

 
39, c1 =

 
55, 

 

which is just the solution (4) with the roles of b1 and c1 interchanged. 

 

Thus, from the three solutions of the Diophantine equation (3.1), given in (1), we get only 

one (distinct) solution of the Diophantine equation (2.1), by applying Proposition 3.1. 

 

The lemma below considers the case when two independent solutions of the Diophantine 

equation (3.1) are known. 

 

Lemma 3.3 : Let (X,
 
Y,

 
Z) and (A, B, C) be two independent solutions of the Diophantine 

equation x
2 
=

 
y

2 
+

 
3z

2
. Then, (X

 
A, |

 
BY – 3CZ

 
|, BZ + CY) and (X

 
A, BY + 3CZ, |

 
BZ – CY

 
|) 

are also its solutions. 

 

Proof.  Note that X
2 
A

2 
=

 
(Y

2 
+

 
3Z

2
)(B

2 
+

 
3C

2
) can be expressed in two ways as follows : 

 

(Y
2 
+

 
3Z

2
)(B

2 
+

 
3C

2
)

 
=

 
(BY – 3CZ)

2 
+

 
3 (BZ + CY

 
)

2 
=

 
(BY + 3CZ)

2 
+

 
3( BZ – CY)

2
. 

 

Thus, we get the desired result.  
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If two independent solutions of x
2 
=

 
y

2 
+

 
3z

2
 are known, Lemma 3.3 finds two more. Since 

 

26
2 
=

 
23

2 
+

 
3.7

2 
=

 
22

2 
+

 
3.8

2 
=

 
1

2 
+

 
3.15

2
,                              (5) 

 

from (1) and (5), by Lemma 3.2, we get the following six independent solutions : 

 

(14×26)
2 
=

 
236

2 
+

 
3.160

2 
=

 
362

2 
+

 
3.22

2 

 

=
 
148

2 
+

 
3.192

2 
=

 
358

2 
+

 
3.38

2 

 

=
 
122

2 
+

 
3.198

2 
=

 
214

2 
+

 
3.170

2
. 

 

Thus, corresponding to x
 
=

 
7×13, there are only two independent solutions of (3.1), namely, 

 

(7×13)
2 
=

 
59

2 
+

 
3.40

2 
=

 
37

2 
+

 
3.48

2
. 

 

Proposition 3.2 : Let (a0, b0, c0) and (a1, b1, c1) be two independent solutions of the 

Diophantine equation a
2 

=
 
b

2 
+

 
c

2 
–

 
bc. Then, (a0 a1, b0 b1 –

 
c0 c1, c0(b1

 
– c1) + b0 c1) and         

(a0 a1, b0(b1 –
 
c1) + c0 c1, b1 c0

 
– b0 c1) are also its solutions, where in the latter case, we must 

have b1 c0
 
– b0 c1 > 0; if b1 c0

 
– b0 c1 < 0, interchange the roles of the first and the second 

solutions. 

 

Proof.  By Lemma 3.1, 

,Zc  ),ZY(b  ,a 02
1

2 00
X   

 

.Cc  ),CB(b  ,a 12
1

2 11
A   

 

Now, by Lemma 3.2, 

 

,CYBZc  ,)CYBZ()CZ3BY(b  ,a 2][
2
1

2 22
XA    

 

.CYBZc  ,)CYBZ()CZ3BY(b  ,a 3][
2
1

2 33
XA    

 

We now simplify as follows : 

 

a2 = 2a0 a1, c2 = (2b1 – c1)c0 + (2b0 – c0)c1 = 2(b0 c1 + b1 c0 – c0 c1), 

 

BY
 
–

 
3CZ

 
=

 
(2b1 –

 
c1)(2b0 –

 
c0)

 
–

 
3c1 c0 =

 
2(2b0 b1 –

 
b0 c1

 
–

 
b1 c0 –

 
c0 c1), 

so that 

b2 = (2b0 b1 –
 
b0 c1

 
–

 
b1 c0 –

 
c0 c1)

 
+

 
(b0 c1 + b1 c0 – c0 c1)

 
=

 
2(b0 b1 –

 
c0 c1). 

Again, 

a3 = 2a0 a1, c3 = (2b1 – c1)c0 – (2b0 – c0)c1 = 2(b1 c0 – b0 c1), 
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BY
 
+

 
3CZ

 
=

 
(2b1 –

 
c1)(2b0 –

 
c0)

 
+

 
3c1 c0 =

 
2(2b0 b1 +

 
2c0 c1

 
–

 
b0 c1 –

 
b1 c0), 

so that 

b3 = (2b0 b1 +
 
2c0 c1

 
–

 
b0 c1 –

 
b1 c0)

 
+

 
(b1 c0 – b0 c1)

 
=

 
2(b0 b1 + c0 c1 –

 
b0 c1). 

 

Now, ignoring the common factor 2, we get the desired result.  

 

If (a0, b0, c0) and (a1, b1, c1) are two independent solutions of the Diophantine equation       

a
2 

=
 
b

2 
+

 
c

2 
–

 
bc, then obviously (a0 a1, b0 a1, c0 a1) and (a0 a1, a0 b1, a0 c1) are its two 

independent solutions. By virtue of Proposition 3.2, we get two more independent solutions 

corresponding to a = a0 a1. Since 

 

a0 =
 
13, b0 =

 
15, c0 =

 
7,                                            (6) 

 

a0 =
 
13, b0 =

 
15, c0 =

 
8,                                            (7) 

 

are solutions of the Diophantine equation (2.1), the two solutions (3) and (6) together 

gives, by Proposition 3.2, the two independent solutions 

 

a2 = 713, b2 = 85, c2 = 96, 

 

a2 = 713, b2 = 99, c2 = 19. 

 

Thus, the four independent solutions of the Diophantine equation (2.1), obtained by the 

application of Proposition 3.2, are 

 

a2 = 713, b2 = 96, c2 = 85. 

 

a2 = 713, b2 = 96, c2 = 11. 

 

a2 = 713, b2 = 99, c2 = 80. 

 

a2 = 713, b2 = 96, c2 = 19. 

 

This explains why the Diophantine equation (2.1) possesses eight independent solutions 

corresponding to a
 
=

 
713. 

                                                                                               

4. Remarks 

 

Corresponding to a
 
=

 
7, the two independent solutions of the Diophantine equation (2.1) are 

given in (2) and (3), and its solutions corresponding to a
 
=

 
13 are given in (6) and (7). In 

Section 3 above, we found the four independent solutions of (2.1) when a = 713, by 

considering the solutions (3) and (6). If we want to apply the second part of Proposition 

3.2, we see that, with the two solutions (2) and (6) (in this order), c3 = – 11 < 0. Thus, we 

rewrite them as 
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a0 =
 
13, b0 =

 
15, c0 =

 
7,                                              

 

a1 =
 
7, b1 =

 
8, c1 =

 
3,                                                

 

and then, by Proposition 3.2,  

 

a2 = 713, b2 = 99, c2 = 80, 

 

a2 = 713, b2 = 96, c2 = 11. 

 

It can be seen easily that the two solutions obtained from (3) and (7) are not distinct from 

the two solutions obtained above. 
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